Giant cell tumour (central giant cell lesion) of the maxilla

Gino Marioni a; Rosario Marchese-Ragona a; Luca Guarda-Nardini b; Roberto Stramare c; Elia Tognazza a; Filippo Marino d; Alberto Staffieri a

a Department of Otolaryngology Head Neck Surgery, b Department of Maxillofacial Surgery, University of Padova, Padova, Italy; c Institute of Radiology, University of Padova, Padova, Italy; d Institute of Pathology, University of Padova, Padova, Italy

Online Publication Date: 01 July 2006

To cite this Article Marioni, Gino, Marchese-Ragona, Rosario, Guarda-Nardini, Luca, Stramare, Roberto, Tognazza, Elia, Marino, Filippo and Staffieri, Alberto (2006)'Giant cell tumour (central giant cell lesion) of the maxilla', Acta Oto-Laryngologica, 126:7, 779 — 781

To link to this Article DOI: 10.1080/00016480500504200
URL: http://dx.doi.org/10.1080/00016480500504200

PLEASE SCROLL DOWN FOR ARTICLE

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
CASE REPORT

Giant cell tumour (central giant cell lesion) of the maxilla

GINO MARIONI1, ROSARIO MARCHESE-RAGONA1, LUCA GUARDA-NARDINI2, ROBERTO STRAMARE3, ELIA TOGNAZZA1, FILIPPO MARINO4 & ALBERTO STAFFIERI1

1Department of Otolaryngology, Head Neck Surgery, 2Department of Maxillofacial Surgery, 3Institute of Radiology and 4Institute of Pathology, University of Padova, Padova, Italy

Abstract
The giant cell tumour (GCT) is a benign, locally invasive lesion that accounts for about 20% of benign bone tumours. Approximately 2% of all GCTs arise in the head and neck region. Giant cell lesions in the craniofacial skeleton other than the jaws are uncommon; the majority of them occur in the sphenoid, ethmoid and temporal bones. GCT of the maxilla has seldom been described. We present the case of an 83-year-old patient with an advanced GCT of the left maxilla who underwent en bloc resection through maxillectomy. Reconstruction of the orbital frame and maxilla was performed with autologous calvaria and a temporalis muscle pedicled flap. Our successful maxillary reconstruction based on the association between autologous calvarial bone sticks bent with titanium miniplates and a temporalis muscle pedicled flap allowed the involvement of only one donor area for both hard and soft tissues. At 1-year follow-up, our patient showed no evidence of recurrent GCT, with satisfactory aesthetic results.

Keywords: Giant cell tumour, central giant cell lesion, maxilla, reconstruction, autologous

Introduction
The giant cell tumour (GCT) is a benign, locally invasive lesion. GCTs account for about 5% of all primary bone tumours and about 20% of benign bone tumours. The epiphyses of long bones, especially the distant femur, proximal tibia and distant radius, are the most common sites. The sacrum is the most common site for a GCT involving flat bones.
Approximately 2% of all GCTs arise in the head and neck region, <1% in the skull [1,2]. Giant cell lesions in the craniofacial skeleton other than the jaws are uncommon; the majority of them occur in the sphenoid, ethmoid and temporal bones [1]. A review of the literature showed that GCT of the maxilla has been seldom encountered [3].

We present a case of GCT of the maxilla and briefly discuss the associated diagnostic, surgical and reconstructive problems.

Case report
In January 2003, an 83-year-old caucasian male patient came to the Department of Otolaryngology-Head and Neck Surgery of Padova University because of a 3-year history of a slowly enlarging left maxillary swelling. There was no history of maxillary trauma; the patient worked in the past as a varnisher. The patient reported nasal obstruction and a feeling of left orbital compression without nasal discharge, epistaxis, pain, diplopia or loosening of maxillary teeth.

Physical examination revealed a left maxillary swelling with displacement of the ipsilateral orbit. The rhinoscopic examination showed a right deflexion of nasal septum; the left nasal fossa was occupied by an esophitic lesion and serous secretions. The oral examination showed a significant hard palate swelling. The objective examination of nasopharynx, larynx and ears was normal. No cervical lymph node enlargement was seen. Biopsies were performed...
under video-rhinoscopic control (0° rigid endoscope) and through a hard palate mucosa incision. Histopathological evaluation of biopsy specimens revealed a giant cell lesion.

Computed tomography (CT) showed an expansive lesion of the anterior left maxilla, completely filling the maxillary sinus and extending superiorly beyond the floor of the ipsilateral orbit and inferiorly to the hard palate (Figure 1A, B). Haematological investigations showed normal serum calcium levels (2.25 mmol/L; normal values 2.10–2.55 mmol/L). A parathyroid 99mTc-MIBI scintigraphy showed a significant capitation of the maxillary lesion without evidence of parathyroid adenoma or multiple gland hyperplasia.

The patient underwent left maxillectomy through a para-lateral nasal access (Weber-Fergusson modified incision). After an en bloc radical lesion resection, the reconstruction of the orbitary frame and the maxillary sinus anterior wall was carried out with autologous calvaria remodelled sticks bent with titanium miniplates (Figure 1D, E). The reconstruction of hard palate dehiscence was carried out with a temporalis muscle pedicled flap.

The final pathological evaluation on permanent sections revealed both large multinuclear giant cells and mononuclear spindle-shaped stromal cells (Figure 1C). Thin-walled vessels and foci of haemorrhage were also evident. The pathologist reached a diagnosis of GCT (central giant cell lesion).

The postoperative course was regular without the occurrence of diplopia. Serial clinical and radiological follow-up controls were planned (Figure 1F). At the last follow-up, 1 year after the intervention, the patient showed no evidence of recurrent disease. The aesthetic results were also satisfactory (Figure 1G).

Discussion

The stroma of most GCTs is vascular and contains numerous thin-walled capillaries, often with small areas of haemorrhage. These lesions may be associated with secondary aneurysmal bone cyst formation but also contain solid areas with the typical histological appearance of GCT. The pathologic differential diagnosis of GCT is extensive, including giant cell reparative granuloma, brown tumour of hyperparathyroidism, osteoblastoma, chondroblastoma, aneurysmal bone cyst, non-ossifying fibroma, foreign body reaction and osteosarcoma with abundant giant cells. These lesions can be difficult to distinguish from one another, particularly at fine-needle aspiration or with frozen section specimens, emphasizing the need for careful and thorough clinical, pathological and radiological correlation. This is particularly true of brown tumour of hyperparathyroidism, which can be indistinguishable from GCT at pathological analysis. Laboratory analysis should be performed to exclude this possibility in all cases. In our case calcium level determination and a parathyroid 99mTc-MIBI scintigraphy ruled out the presence of a parathyroid adenoma or multiple gland hyperplasia.

CT scan can provide a detailed assessment of maxillary CGT, showing the soft tissue mass of the lesion, cortical perforation, amount of bony destruction and extension toward important adjacent anatomic structures, such as orbit and cranial base, that may not be clearly shown by conventional radiography. CT scanning is invaluable to surgical planning and management. Magnetic resonance

![Image of CT scans and patient photos](https://via.placeholder.com/150)
imaging (MRI) is superior to CT in delineating soft-
tissue tumour extent because of its improved con-
trast resolution. On the other hand, the solid 
components of GCT demonstrate low to interme-
diate signal intensity on T2-weighted MRI. Bone 
scintigraphy shows increased radionuclide uptake 
in the majority of GCTs.

Although the type of primary surgical removal of 
GCT is the most significant factor in disease 
recurrence, a relation also exists between recurrence 
rates and interruption of the cortex and soft 
tissue extension. In the maxilla, the cortical plates 
are thin and may be invaded by the GCT at an 
early stage.

From a review of the available literature, surgical 
excision appears to be the treatment of choice for 
maxillary GCT. Regardless of the site of presenta-
tion, marginal resection or curettage is associated 
with a high GCT recurrence rate (40–60%). Wide 
radical resection shows a reduced recurrence rate 
(7%) [4]. After extended GCT resection, recon-
struction with allografts has been described. The 
advantage of using autologous tissue is relatively 
rapid incorporation with a lower risk of infection 
-especially with vascularized grafts-. We describe a 
successful maxillary reconstruction based on the 
association between autologous calvarial bone sticks 
bent with titanium miniplates and a temporalis 
muscle pedicled flap. With this reconstructive ap-
proach there was only one donor area for both hard 
and soft tissues. Because of the risk of sarcomatous 
transformation, radiation therapy is generally 
avoided or reserved for GCTs that are considered 
inoperable.

According to the literature, GCT recurrences 
usually occur within the first 3 years after primary 
treatment (80–90% of the cases). Consequently, 
patients should be evaluated at 4-month intervals for 
the first 2 years and at 6-month intervals thereafter 
up to 5 years. Long-term follow-up of GCT is 
mandatory because late distant metastases have 
been also reported.

References
Giant cell tumor of the larynx: a clinicopathologic series of 
eight cases and a review of the literature. Mod Pathol 2001; 
14:1209–15.
Huang C-J. MRI appearance of a giant cell tumor of the skull 
[3] Frederick FJ, Stewart IF, Worth AJ. Giant cell lesion of the 
[4] Murphey MD, Nomikos GC, Flemming DJ, Gannon FH, 
Temple HT, Kransdorf MJ. From the archives of AFIP. 
Imaging of giant cell tumor and giant cell reparative granu-
loma of bone: radiologic-pathologic correlation. Radi-